A GRASP algorithm for designing a Wide Area Network backbone
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Abstract
The Greedy Randomized Adaptive Search Procedure (GRASP) is a well-known metaheuristic for combinato-
rial optimization. In this work, we introduce a GRASP for designing a survivable Wide Area Network backbone.
The algorithm builds topologies which comply with heterogeneous node-connectivity requirements. This work is
motivated by the need of designing a low-cost backbone network which can survive to failures in switch sites as
well as in the connection lines. The method is applied to a set of problem instances with different connectivity
requirements, obtaining results which appear promising.
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1 Introduction

A wide area network (WAN) can be seen as a set of the sites and a set of communication lines that interconnect
the sites. A typical WAN is organized as a hierarchical structure integrating two levels: one backbone network and
a number of local access networks [9]. Each local access network usually has a tree-like structure, rooted at a single
switch site of the backbone network, and connects users (terminal sites) either directly to this switch site or to a
hierarchy of intermediate concentrator sites (local servers) which are connected to the switch site. The backbone
network has usually a meshed topology, and its purpose is to allow efficient and reliable communication between
the switch sites of the network that act as connection points for the local access networks (eventually incorporating
other switch sites for efficiency purposes).

The topological design of a Backbone network basically consists of finding a minimum cost topology which
satisfies some additional requirements, generally chosen to improve the survability of the network (that is, its
capacity to resist failures of some of its components). One way to do this is to specify a connectivity level, and
search for topologies which have at least this number of disjoint paths (either edge disjoint or node disjoint) between
pairs of switch sites. In the most general case, the connectivity level can be fixed independently for each pair of
switch sites (heterogeneous connectivity requirements). This problem can be modelled as a Generalized Steiner
Problem with Node-Connectivity [13, 18]; finding a minimum cost topology with these constraints is a NP-hard
problem. Some references in this area are 7, 9, 10, 11, 12, 14, 17]; these works are either focused on the edge-disjoint
flavour of the problem, or explore particular cases (for example, where the connection requirement is set to two
disjoint paths for all switch sites [3, 4, 8]).

Topologies verifying edge-disjoint path connectivity constraints assure that the network can survive to failures in
the connection lines; while node-disjoint path constraints assure that the network can survive to failures both in in
switch sites as well as in the connection lines. This paper proposes an algorithm based on the GRASP methodology
for finding a Backbone network topology that satisfies connection requirements on the number of node-disjoint
paths, working upon the Generalized Steiner Problem with Node-Connectivity model.

Section 2 formalizes our backbone network design problem (BNDP). Section 3 presents the GRASP metaheuris-
tic, and Section 4 introduces its adaptation for solving the BNDP. Experimental results are presented in Section 5,
showing that the algorithm works very well for a number of test cases corresponding to highly structured topologies
of more than a hundred nodes. Finally, conclusions and future work are presented in Section 6.



2 Notation and Problem Formalization

We introduce the notation used to formalize the problem:

e Sp is the set of sites where the switch equipments can be installed; these sites also will be called potential
switch sites or backbone sites. The number of the switch sites is given by np = |Sp|.

. s}? C Sp is a distinguished subset of switch sites, which will always be included in the backbone network
topology (usually because they are the access points for some local access subnetworks). We usually call these
the fized sites of the backbone. The nodes in Sp — Sg) are called Steiner nodes.

e R= {rij}i jesd is a matrix of requirements of connection between pairs of sites of Sg). We will require r;;
’ D
node disjoint paths between fixed sites ¢ and j, where r;; usually is strictly greater than 1.

o C={cij}, jesp 18 the matrix which gives for any pair of sites of Sp, the cost of laying a line between them.
When the direct connection among both places is not possible, we take ¢;; = co.

o E={(i,j);Vi € Sp,Vj € Sp/cij < oo}, this is the set of feasible connections between two switch sites.
e Gp = (Sp, E) is the graph of feasible connections on the Backbone Network.

We define our Backbone Network Design Problem BNDP(Sp, E,C, R) as the problem of finding a subgraph
Hp of G of minimum cost such that Hp satisfies the connection requirements specified in R.

3 Greedy Randomized Adaptive Search Procedure (GRASP)

GRASP is a well known metaheuristic, which has been applied for solving many hard combinatorial optimization
problems with very good results [5, 6]. A GRASP is an iterative process, where each GRASP iteration consists of
two phases: construction and local search. The construction phase builds a feasible solution, whose neighborhood
is explored by local search. The best solution over all GRASP iterations is returned as the result.

Figure 1 illustrates a generic GRASP implementation pseudo-code. The GRASP takes as input parameters the
candidate list size, the maximum number of GRASP iterations and the seed for the random number generator.
After reading the instance data (line 1), the GRASP iterations are carried out in lines 2-6. Each GRASP iteration
consists of the construction phase (line 3), the local search phase (line 4) and, if necessary, the incumbent solution
update (lines 5 and 6).

Procedure GRASP(ListSize,MazIter,RandomSeed);

InputInstance();

for k =1 to MazlIter do
Initial Solution = ConstructGreedyRandomizedSolution(ListSize, RandomSize);
LocalSearchSolution = LocalSearch(Initial Solution);
if cost(LocalSearchSolution) < cost(BestSolutionFound) then

UpdateSolution(BestSolutionFound, Local SearchSolution);
end _for;
return BestSolutionFound;
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Figure 1: GRASP pseudo-code

In the construction phase, a feasible solution is built, one element at a time. At each step of the construction
phase, a candidate list is determined by ordering all non already selected elements with respect to a greedy function
that measures the (myopic) benefit of including them in the solution. The heuristic is adaptive because the benefits
associated with every element are updated at each step to reflect the changes brought on by the selection of the
previous elements. Then one element is randomly chosen from the best candidates list and added into the solution.
This is the probabilistic component of GRASP, which allows for different solutions to be obtained at each GRASP
iteration, but does not necessarily jeopardize the power of the adaptive greedy component.

The solutions generated by the construction phase are not guaranteed to be locally optimal with respect to simple
neighborhood definitions. Hence, it is beneficial to apply a local search to attempt to improve each constructed
solution. A local search algorithm works in an iterative fashion by successively replacing the current solution by a
better solution from its neighborhood. It terminates when there is no better solution found in the neighborhood.
The local search algorithm depends on the suitable choice of a neighborhood structure, efficient neighborhood
search techniques, and the starting solution. The construction phase plays an important role with respect to this
last point, since it produces good starting solutions for local search. Normally, a local optimization procedure,
such as a two-exchange, is employed. While such procedures can require exponential time from an arbitrary
starting point, empirically their efficiency significantly improves as the initial solutions improve. Through the use



of customized data structures and careful implementation, an efficient construction phase that produces good initial
solutions for efficient local search can be created. The result is that often many GRASP solutions are generated
in the same amount of time required for the local optimization procedure to converge from a single random start.
Furthermore, the best of these GRASP solutions is generally significantly better than the solution obtained from a
random starting point.

4 GRASP for the BNDP

At this point, we will introduce the customization of GRASP methodology for its application on the BNDP. We
apply the concepts of GRASP to the approximate solution of the BNDP, using a path-based construction phase
and a tree-based local search, which are presented below.

4.1 Solution Construction Phase

The algorithm takes as input the network Gr of feasible connections on the backbone network, the matrix R of
connection requirements between fixed switch sites of S%’, and the matrix of connection costs C. The current
solution is initialized with the fixed sites without any connection among them. An auxiliary matrix M is initialized
with the values of R. This is used with the purpose of maintaining on each step the connection requirements not
yet satisfied between sites of Sg). The paths found on each iteration are stored in a data structure P.

Iteratively the construction phase searches for node-disjoint paths between fixed sites of Sg) that have not yet
satisfied their connection requirements. The algorithm chooses on each iteration such a pair of fixed switch sites
siy, 83, € Sg) The current solution is updated by adding a new node-disjoint path between the chosen sites. For this,
we employ an extension for the Takahashi-Matsuyama algorithm [15] in order to compute efficiently the k shortest
node-disjoint paths from s!, to s#,. These paths are stored in a restricted candidate list £,. A path is randomly
selected from £,. This process is repeated until all the connection requirements have been satisfied; then the feasible
solution G,,; and the set of node-disjoint paths P are returned. The pseudo-code of BNDP _Construction_Phase is
given in Figure 2.

Procedure BNDP_Construction_Phase(G g,R,C);

Goot + (S0,0) M « R; Pij « 0 Vsi, 57 € SU);
while 3m;; > 0 do
Let 5%y, 5%, € SU) be two sites that satisfy mi; > 0.
L, + the k shortest node-disjoint paths from s;, to s/, computed by GTMA
(our Generalization of Takahashi-Matsuyama algorithm);
p « Select Random(L,);
Gool < Gsot U{p}; Pij + Pi; U{p};i M + Update Matrix(Gso1, M, R, p);
end_while;
return Gyo1, P
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Figure 2: Construction Phase pseudo-code

4.2 Local Search

The local search strategy proposed is a generalization of the key-path based local search, proposed by Verhoeven,
Severens and Aarts [16]. A key-path is a path such that its end nodes are either non-fixed switch sites of degree at
least 3, or fixed switch sites; and all its intermediate nodes are non-fixed switch sites of degree 2.

The algorithm takes as inputs the network Gz, the matrix R, the matrix C, the set P of found paths, and the
decomposition in key-paths K,(G...). The algorithm searches the best neighbor solution, according to our definition
of Neighborhood Structure, which we have called Tree Neighborhood. Iteratively the local search analyzes each key-
path of the decomposition Kp(G..1), replacing (if it is possible) a key-path by a tree of smaller cost, maintaining the
feasibility of the current solution. When there are no more improvements to be obtained by substituting key-paths
by trees, the best feasible solution and the set of found paths are returned. The pseudo-code of BNDP Local_Search
is given in Figure 3.

5 Implementation and Performance Tests

We present here some experimental results obtained with the algorithm presented in the previous section.



Procedure BNDP_Local Search(G g,R,C,P,K,(Gso1));
1 improve + TRUE;
2 while improve do
3 improve < FALSE;
4 fork=1,...,|Ky(Gsor)| do
5 Let pi be the k-th key-path;
6 T < the minimal key-tree computed by MKTA
(our Generalization of Verhoeven-Severens-Aarts algorithm);
7 if (cosT(T) < cosT(ps)) then
8 Gsot  (Gsor \ Pr) U T; P + Update_Paths(P, pr, T);
9 K, (Gs01) + Update KeyPaths(Ky(Gsot), x> T);
10 improve < TRUE;
11 end_if;
12 end_for;
13 end_while;
14 return G,.;,P;

Figure 3: Local Search Phase pseudo-code

The algorithm was implemented in ANSI C language. Adjacency matrices were used as data structures for the
representation of graphs. The experiments were obtained on a Pentium III computer with 800 MHz, and 256 MB
of RAM memory, running under Windows NT 4 operating system.

All instances were solved with identical parameter settings. The candidate list size was ListSize = 10, and the
maximum number of iterations MaxIter = 100. These values were chosen from GRASP reference literature [5, 6].

We scanned previous literature and selected four problem instances with relatively important size (more than
100 nodes in three cases). In the four cases an optimal solution has been published [10, 11, 14]; this fact allows us
to study the effectiveness of GRASP. In addition, we introduce another instance which was designed constructively
applying certain topological properties related to graphs with triangular inequality. Figure 4 shows the topologies
associated to the test cases 1, 2, 3 and 5. The red (or light grey) nodes represent the fixed switch sites, while
the black nodes represent other potential switch sites, which may or may not be included in the solution (Steiner
nodes). In instances 1 and 2 a link between non-fixed sites has cost 1, a link between a non-fixed site and a fixed
site has cost 2 and a link between two fixed sites has cost 4. In instance 3 the links have costs randomly selected
in the interval [1, 200], satisfying the triangular inequality.

e Network 1 has a double grid structure, with 33 fixed sites, 87 Steiner sites and 286 feasible connections. The
objective is to find a 2-node-survivable network with minimal cost (all connection requirement between fixed
sites are equal to 2).

e Network 2 represents a simplified version of a HSODTN (High Speed Optical Data Transmission Network)
connecting different parts of a war ship, allowing for communication between weapon systems. The objective is
to find a 3-node-survivable network with minimal cost. This model and other variants can be found in [7, 14].

e Network 3 has 22 fixed sites of Sg), 61 Steiner sites and 262 feasible connections. The objective is to find a
4-node-survivable network spanning S’S) (all connection requirement between fixed sites are equal to 4).

o Networks 4 and 5 are test cases based on real networks from Bell Communications Research (Bellcore) [2, 14].
Particularly, we have selected the problems called LATADS5S and LATADL respectively, in order to test the
performance of our algorithm. The objective is to find a 2-node-survivable network with minimal cost. The
LATA5S-problem has 38 fixed sites and 71 feasible connections, and the LATADL-problem has 116 fixed sites
and 173 feasible connections.

Optimal solutions for Network 1 and Network 2 have been published in [12]; the respective minimum costs
are 140 and 74 respectively. These optimal topologies were found by an exact parallel-distributed backtracking
algorithm. For Network 4 and Network 5, optimal solutions have been published in [2, 14], with costs 4739 and
7400. For Network 3, we know an optimal solution of cost 680, obtained from the constructive procedure used to
build this test case.

The runs performed on these instances proved to be successful, the optimal solution being obtained by GRASP
for the first four cases, and a sub-optimal solution with percent relative error of 0.60 for the last case. The following
table shows some data about the performance of our GRASP algorithm for each instance. The entries correspond
to the test case names, the iteration number where the best feasible solution was found, the optimum cost and the
cost of the best feasible solution found by our algorithm, and the percentual gap between these costs.
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Figure 4: Topologies associated to the instances 1, 2, 3 and 5.

Topology | Best Iteration | Optimal cost | Best found | Gap |

Network 1 5 145 145 0
Network 2 5 74 74 0
Network 3 7 680 680 0
Network 4 6 4739 4739 0
Network 5 14 7400 7445 0.60

6 Conclusions

We described a greedy randomized search adaptive procedure for the Backbone network design problem with
heterogenous connectivity requirements. This problem can be modeled as a Generalized Steiner Problem with
node-connectivity requirements.

The implementation of our algorithm was tested on different problems taken from literature related to the
problem, and was shown to find good quality solutions within few iterations (in most cases an optimal solution was
found; the only exception was one case where the cost of the best solution found was within 0.61% of the optimum).
These are interesting results considering that to compute the best solution is a NP-Hard problem [14, 18]. We noted
that, as expected, the running times increase with the number the sites, links, and the connection requirements.

This is (up to our knowledge) the first results published about the application of methauristics for solving the
Backbone Network Design Problem in the general case with node connectivity constraints.

Further work can explore different local search strategies, which may improve solution quality. At present we



are experimenting with an alternative local search strategy, based on paths, which is simpler than the one presented
in this paper; preliminary results are encouraging.
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